5CX1500B Power Pentode

The Svetlana 5CX1500B is a high-performance ceramic/metal power pentode designed for use as a highly linear Class AB₁ linear amplifier. The pentode is ideal for VHF service and is recommended for use in FM broadcast transmitters. The 5CX1500B filament is precision fabricated in a cylindrical mesh configuration for exceptional mechanical stability and long life.

The Svetlana 5CX1500B is manufactured in the Svetlana factory in St. Petersburg, Russia, and is designed to be a direct replacement for both the 5CX1500B and 5CX1500A manufactured in the United States.

5CX1500B

General Characteristics

deneral enaractoristics					
Electrical					
Filament:			Thoriated	tungsten	
Voltage	5.0 ± 0.25 V				
Current, at 5.0 volts	38.5 A				
Transconductance (Average):					
$I_{b} = 1.0 \text{ Adc}, E_{c2} = 500 \text{ Vdc}$			24,0	00 µmhos	
Amplification factor (average):					
Grid to Screen				5.5	
Direct interelectrode capacitance (gro	ounded cath	node):			
_Input				75 pF	
Output				17.8 pF	
Feedback				0.20 pF	
Frequency of maximum rating:					
CW				110 MHz	
Mechanical					
Cooling				Forced air	
Base		R	Ring and br	eechblock	
Recommended air system socket				840 series	
Recommended (air) chimney				SK-806	
Operating position		Axis verti	cal, base d	own or up	
Maximum operating temperature				250°C	
Maximum dimensions:					
Length			130 m	m (5.2 in.)	
Diameter	85.6 mm (3.37 in.)				
Net weight			850 g	m (30 oz.)	
Radio Frequency Linear Amplifier Cl	ass C (CW	conditions)			
Absolute maximum ratings	,	,			
Plate voltage				5000 volts	
Screen voltage				750 volts	
Plate dissipation			1	500 watts	
Suppressor dissipation				25 watts	
Screen dissipation				75 watts	
Grid dissipation				25 watts	
Typical Operation					
(Frequencies to 30 MHz)					
Plate voltage	3000	4000	4500	Vdc	
Suppressor voltage	0	0	0	Vdc	
Screen voltage	500	500	500	Vdc	
Grid voltage	-200	-200	-200	Vdc	
Plate current	900	800	900	mAdc	
Screen current	94	66	88	mAdc	
Grid current	35	25	34	mAdc	
Peak rf grid voltage	255	245	255	V	
Calculated driving power	9.0	6.5	9.0	W	
Plate input power	2700	3200	4050	W	
Plate dissipation	720	850	870	W	
Plate output power	1980	2350	3180	W	
Resonant load impedance	1570	2240	2520	ohms	

Power Pentode

Radio Frequency Linear Amplifier, Grid Driven, Class AB,

1 000 400 0 500 50 -89 -9 250 25 690 69 480 48 71 5	0 Vdc 00 Vdc 00 Vdc 00 Vdc 00 Vdc 00 Mdc 00 mAdc						
1 000 400 0 500 50 -89 -9 250 25 690 69 480 48 71 5	750 volts 500 watts 25 watts 75 watts 25 watts 25 watts 25 watts 25 watts 26 watts 27 watts 28 watts 29 Vdc 20 Vdc 20 Vdc 20 Vdc 20 Vdc 20 MAdc 20 mAdc 20 mAdc						
1 000 400 0 500 50 -89 -9 250 25 590 69 480 48 71 5	500 watts 25 watts 75 watts 25 watts 25 watts 25 watts 26 watts 27 watts 28 watts 29 watts 20 Vdc 20 Vdc 20 Vdc 20 Vdc 20 Vdc 20 MAdc 20 mAdc 25 mAdc						
000 400 0 500 50 -89 -9 250 25 590 69 480 48 71 5	25 watts 75 watts 25 watts 20 Vdc 00 Mdc 30 mAdc 35 mAdc 59 mAdc						
0 500 50 -89 -9 250 25 690 69 480 48 71 5	75 watts 25 watts 25 watts 00 Vdc 00 Ndc 35 mAdc 59 mAdc						
0 500 50 -89 -9 250 25 690 69 480 48 71 5	25 watts 00 Vdc 0 Vdc 00 MAdc 35 mAdc 59 mAdc						
0 500 50 -89 -9 250 25 690 69 480 48 71 5	D0 Vdc 0 Vdc 00 Vdc 00 Vdc 00 Vdc 00 Vdc 00 Mdc 00 mAdc 00 mAdc 35 mAdc 59 mAdc						
0 500 50 -89 -9 250 25 690 69 480 48 71 5	0 Vdc 00 Vdc 00 Vdc 00 Vdc 00 MAdc 00 mAdc 35 mAdc 59 mAdc						
0 500 50 -89 -9 250 25 690 69 480 48 71 5	0 Vdc 00 Vdc 00 Vdc 00 Vdc 00 MAdc 00 mAdc 35 mAdc 59 mAdc						
0 500 50 -89 -9 250 25 690 69 480 48 71 5	0 Vdc 00 Vdc 00 Vdc 00 Vdc 00 MAdc 00 mAdc 35 mAdc 59 mAdc						
500 50 -89 -9 250 25 590 69 480 48 71 5	D0 Vdc 00 Vdc 00 Vdc 50 mAdc 00 mAdc 35 mAdc 59 mAdc						
-89 -9 250 25 390 69 480 48 71 5	90 Vdc 50 mAdc 90 mAdc 90 mAdc 95 mAdc 95 mAdc						
250 25 690 69 480 48 71 5	50 mAdc 90 mAdc 35 mAdc 59 mAdc						
690 69 480 48 71 5	90 mAdc 35 mAdc 59 mAdc						
480 48 71 5	mAdc mAdc						
71 5	59 mAdc						
<u> </u>) ∠						
32 2	25 MACC						
89 9	90 v						
0	0 W						
330 178	35 W						
680 350	00 ohms						
in. I	Max.						
38	43 A						
Interelectrode capacitances (grounded grid connection)							
32	37 pF						
.5 ′	18.5 pF						
	0.05 pF						
	Interelectrode capactances (grounded cathode connection)						
nection) 70	80 pF						
nection) 70	80 pF 18.5 pF 0.25 pF						
1	- (

5CX1500B Outline Drawing

Dimensional Data						
Dim.	Millimeters		Inches			
	Min.	Max.	Min.	Max.		
А	84.7	85.6	3.33	3.37		
В	20.5	20.8	0.81	0.82		
С	47.5	48.3	1.87	1.90		
D	124	131	4.90	5.15		

Electrical Application

Filament operation The rated filament voltage for the 5CX1500B is 5.0 volts. Filament voltage, as measured at the socket, should be maintained within $\pm 5\%$ of this value to obtain maximum tube life.

Grid operation The rated dissipation of the grid is 25 watts. This is approximately the product of DC grid current and peak positive grid voltage. Operation at bias and drive levels near those listed will insure safe operation.

Screen operation The power dissipated by the screen must not exceed 75 watts. Screen dissipation, in cases where there is no AC applied to the screen, is the simple product of the screen voltage and the screen current. If the screen voltage is modulated, the screen dissipation will depend on RMS screen current and voltage. Screen dissipation is likely to rise to excessive values when the plate voltage, bias voltage, or plate load are removed with filament and screen voltages applied. Suitable protective means must be provided to limit the screen dissipation to 75 watts in the event of a circuit failure.

Suppressor operation The rated dissipation of the suppressor is 25 watts. Suppressor current will be zero or very nearly zero for all typical operating conditions specified. The 5CX1500B has been designed for zero voltage operation of the suppressor grid for most applications.

Plate operation The plate dissipation rating of the 5CX1500B is 1500 watts. The tube and associated circuitry should be protected against surge current in the event of an arc with a current limiting resistance of 10 - 25 ohms in series with the lead from the power supply to the plate. The resistor should be capable of withstanding the surge current. It should not be used as a fuse.

Mechanical Application

Mounting The 5CX1500B must be operated with its axis vertical. The base of the tube may be down or up at the convenience of the equipment designer.

Socket The Svetlana 5CX1500B is designed for the Eimac SK-840 socket and SK-806 chimney. The use of recommended airflow rate through the socket provides effective forced-air cooling of the tube. Air forced into the bottom of the socket passes over the tube terminals through the Air Chimney and exits through the anode cooling fins.

Cooling

The maximum temperature rating for the anode core and the metal/ceramic seals of the 5CX1500B is 250°C. Sufficient forced-air circulation must be provided to keep the temperature of the anode at the base of the cooling fins and the temperature of the ceramic/metal seals below 250°C. Air-flow requirements to maintain seal temperature at 225°C in 50°C ambient air are tabulated at upper right (for operation below 30 MHz).

Minimum Cooling Air-Flow Requirements							
	Sea Level		6,000 feet				
Plate dissipation	Air flow	Pressure drop	Air Flow	Pressure Drop			
(watts)	(CFM)	(Inches of water)	(CFM)	(Inches of water)			
1000	27	0.33	33	0.40			
1550	47	0.76	58	.95			

Since the power dissipated by the filament represents about 200 watts and since grid plus screen plus suppressor dissipation can, under some conditions, represent another 125 watts, allowance has been made in preparing this tabulation for an additional 325 watts dissipation.

The blower selected in a given application must be capable of supplying the desired air flow at a back pressure equal to the pressure drop shown above plus any drop encountered in ducts and filters.

At other altitudes and ambient temperatures the flow rate must be modified to obtain equivalent cooling. The flow rate and corresponding pressure differential must be determined individually in such cases, using rated maximum temperatures as the criteria for satisfactory cooling.

Svetlana power grid tubes

Svetlana offers a line of well-engineered, carefully-constructed power grid tubes for both OEM- and end-user applications. As Russia's leading designer and manufacturer of power grid tubes, Svetlana's product line features power tubes at all levels up to and exceeding one megawatt, and includes high-performance triodes, tetrodes and pentodes.

Svetlana power tubes are designed for single sideband transmission, UHF and VHF television, FM broadcast, industrial heating, medical and scientific applications including high voltage pulse modulator service. And, the Svetlana line features a broad range of tubes designed specifically for very high power broadband distributed amplifiers.

Svetlana Electron Devices, Inc., manages the worldwide marketing, sales and support for the recently-privatized Svetlana in St. Petersburg, Russia. Svetlana Electron Devices has its corporate headquarters in Huntsville, Alabama with sales and support offices in cities throughout the world.

