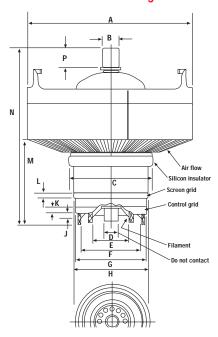


SVETLANA TECHNICAL DATA

4CX20,000B Radial Beam Power Tetrode


he Svetlana[™] 4CX20,000B is a high-performance ceramic/metal power tetrode designed for audio and radio frequency applications. It is particularly well-suited for use in AM broadcast transmitters and pulse modulator service. The Svetlana 4CX20,000B has a directly-heated thoriated tungsten mesh filament for mechanical ruggedness and has excellent high voltage stand-off capability.

The Svetlana 4CX20,000B is manufactured in the Svetlana factory in St. Petersburg, Russia, and is a direct replacement for the 4CX20,000B manufactured in the United States

Characteristics

Electrical		
Filament:	Thoriated-tungsten	mesh
Voltage	10.0 ± 0.5	V
Current @ 10.0V	140	Α
Amplification factor (average):		
Grid to screen	6.7	
Direct interelectrode capacitances (grou	nded cathode):	
Cin	190	рF
Cout	23.5	рF
Сдр	1.5	рF
Direct interelectrode capacitance (groun	ded grid):	
Cin	83	рF
Cout	24.5	рF
Cgk	0.2	рF
Maximum frequency for full ratings (CW)	30	MHz
Mechanical		
Maximum overall dimensions:		
Length	25 cm (9.	84 in)
Diameter	22.4 cm (8.8	30 in.)
Net weight	6.35 kg (14	.0 lb.)
Operating position	Axis vertical, base up or	down
Maximum operating temperature, ceram	ic/metal seals or envelope 2	250° C
Cooling	Forc	ed air
Base	Coaxial, for use with Svetlana SK300A s	ocket

Svetlana Outline drawing

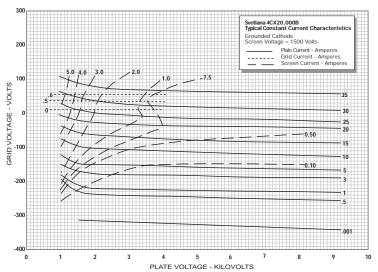
Di	Dimensional Data				
	Millimeters		Inches		
	Min.	Max.	Min.	Max.	
Α	221.74	225.04	8.730	8.860	
В	21.72	22.73	.855	.895	
С	116.66	118.26	4.593	4.656	
D	15.24	19.30	.600	.760	
Е	48.16	49.17	1.896	1.936	
F	79.58	80.59	3.133	3.173	
G	96.32	97.33	3.792	3.832	
Н	101.09	102.11	3.980	4.020	
J	4.78		.188		
K	4.78	_	.188	-	
L	4.78		.188		
М	123.01	124.61	4.906		
Ν	240.41	249.94	9.465	9.840	
Р	12.70	_	.500	_	

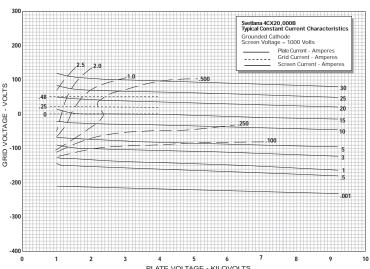
Svetlana 4CX20,000B Radial Beam Power Tetrode

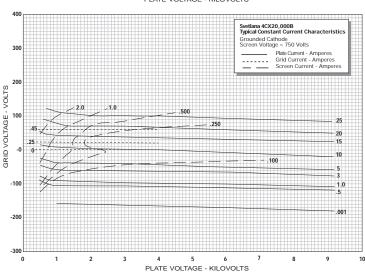
Radio Frequency Power Amplifier Class C AM

Absolute Maximum Ratings:		
DC plate voltage	10,000	
V		
DC grid voltage-	1000	
V		
DC screen voltage	2,000	V
DC plate current	5.0	Α
Plate dissipation	20	kW
Screen dissipation	450	W
Grid dissipation	200	W
Typical Operation		
(Frequencies to 30 MHz, Carrier	Conditio	ns)
DC plate voltage	7.8	kVdc
DC screen voltage	750	Vdc
DC arid voltage	300	Vdc

DC plate voltage	7.8	kVdc	
DC screen voltage	750	Vdc	
DC grid voltage	300	Vdc	
Peak AF screen voltage			
(100% modulation)	<i>750</i>	Vdc	
DC plate current	4.6	Adc	
DC screen current*	0.220	Adc	
DC grid current*	0.108	Adc	
Driving power(calculated)	35	W	
Plate dissipation	6.9	kW	
Plate impedance	845	Ohms	
Plate output power	29	kW	
Pulse Modulator or Regulator Service			


Plate impedance	845	Ohms	
Plate output power	29	kW	
Pulse Modulator or Regulator Se	ervice		
Absolute Maximum Ratings			
DC plate voltage	35	kV	
DC screen voltage	2500	V	
DC grid voltage	-15	kV	
Rear DC cathode current	80	Α	
Plate dissipation	20.0	W	
Screen dissipation	450	W	
Grid dissipation	200	W	
Maximum pulse length	100	mS	


^{*}Approximate value


Cooling

Base-to-Anode Air Flow				
Sea Level		10,000 Feet		
Plate				
Dissipation	Air Flow	Pressure Drop	Air Flow	Pressure Drop
Watts	CFM	Inches of Water	CFM	Inches of Water
12.5	257	0.6	377	0.7
15.0	367	1.0	537	1.2
17.5	500	1.5	730	1.9
20.0	652	2.4	955	3.0

- 1. For each 10° increase in air temperature cooling, flow rate should be increased 20%
- 2. Air must be passed around the base of the tube and through the socket, to assure adequate cooling of the tube base and the socket contacts.
- 3. Minimum air flow requirements for a maximum anode temperature of $225\,^\circ\text{C}$ are shown in the table.
- 4. Air flow must be applied before or simultaneously with the application of power, including the tube filament, and should normally be maintained for several minutes after all power is removed from the tube.

